3 Tuliskan lampu dengan titik L pada gambar di atas. Titik sudut yang berada di lantai adalah A, B, C dan D. Pilih salah satu titik yang ada di lantai tersebut. Hubungkan dengan garis terpendek titik L dengan salah satu titik yang ada di lantai. Tentukan segitiga siku-siku apa yang memuat ruas garis antara titik L dengan salah satu titik yang ada
MatematikaGEOMETRI Kelas 11 SMATransformasiRotasi Perputaran dengan pusat a,bDiketahui segitiga ABC dengan koordinat titik sudut A-3, 2, B2, 4, dan C-1, -1. Segitiga terhadap ABC diputar sebesar -pi titik pusat 5, 1 diperoleh bayangan segitiga ABC. Koordinat titik A', B', dan C' berturut-turut adalah . . . .Rotasi Perputaran dengan pusat a,bTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0253Titik B3,-2 dirotasikan sebesar 90 terhadap titik pusat...0155Titik B3, -2 dirotasikan sebesar 90 terhadap titik pusa...0507Segitiga ABC dengan koordinat titik sudut A2, -1, B6, ...0225Titik 2a,-a diputar 90 berlawanan arah jarum jam dengan...Teks videoada salah kali ini diketahui segitiga ABC dengan koordinat titik sudut a b c, d tanyakan bayangan bayangan segitiga a aksen B aksen C aksen atau koordinat titik a aksen B aksen C aksen berturut-turut perhatikan bentuk umumnya rotasi dengan pusat p a koma B dan sudut dan sudut putar Alfa bisa kita tulis dalam bentuk matriks X aksen y aksen = cos Alfa Sin Alfa Min Sin Alfa cos Alfa X dikurang Y dikurang B ditambah a b Diketahui segitiga abcd diputar sebesar Min phi maka disini alfanya kita ganti dengan mimpi sehingga berdasarkan bentuk umum di atas tulis X aksen X aksen aksen = cos mimpi-mimpi bensin mimpi-mimpi dikali X dikurang Y dikurang B ditambah a bIkan karena besar sudut putaran ada yang positif ada yang negatif maka berpengaruh pada nilai Sin dan cos sudut positif atau negatif sehingga cos Alfa = cos Alfa Sin Alfa = Min Sin Alfa sehingga di sini bisa kita tulis kos mimpi = cos phi Sin mimpi = Min Sin phi Sin phi = Sin P dan cos Q = cos phi Nah bisa kita tulis seperti ini. Nah langkah selanjutnya X aksen y aksen = nilai dari cos phi = min 1 nilai dari sin phi sama dengan nol nah ditulis seperti ini. Nah langkah selanjutnya bisa kita cari yang pertama untuk titik A min 3,2 dirotasikan terhadap pusat P 5,1 sebesar mimpi perhatikan x-nya min 3 Y nya 2 hanya 5 B nya 1 kita gunakan untuk diaX aksen aksen = Min 100 min 1 x di sini diganti hanya dengan 5 B nya = 1 Oke Anya 51 dilakukan perhitungan diperoleh - 100 - 1 - 3 - 5 - 82 - 1 = 1 k dilakukan perkalian matriks baris dikali kolom diperoleh 8 - 1 dilakukan penjumlahan matriks diperoleh 1300 sehingga koordinat A aksen nya 13,06 perhatikan untuk titik B 2,4 dirotasikan terhadap pusat 5,1 sebesar mimpi kita juga gunakan bentuk umum di atas sehingga di sini kita ganti X aksen aksen = minus 100 minus 1 kita ganti hanya 5 B = 1 dan a dilakukan perhitungan diperoleh Min 100 Min1 Min 33 + 51 dilakukan perkalian matriks diperoleh 3 - 3 dilakukan penjumlahan matriks diperoleh 8 - 2 masehi hingga 8 koma min dua dan selanjutnya untuk titik c titik C min 1 koma min 1 dirotasikan terhadap pusat P 5,1 sebesar mimpi naik kita juga guna bentuk umum di atas sehingga X aksen aksen = Min 100 min 1 min 1 dikurang 5 min 1 Kurang 1 + 51 dilakukan perhitungan diperoleh bentuk seperti ini dilakukan perkalian matriks ingat baris dikali kolom diperoleh 62 dilakukan dilakukan penjumlahan matriks peroleh 11/3 sehingga titik Q aksen C aksen 11,3 sehingga jawaban yang sesuai ada pada opsi pilihan E6untuk pembahasan soal kali ini sampai jumpa pada pembahasan soal berikutnya Sudutmempunyai 1 buah titik sudut dan 2 buah kaki sudut. Sebuah sudut diberi nama dengan mencantumkan nama titik-titik pembentuk sudut, dengan titik sudut berada di tengah. Sebuah sudut segitiga sama kaki ABC diketahui memiliki sudut B = 65o, dengan sudut C berhadapan dengan sudut B. Berapa nilai sudut A? 2. Segitiga siku-siku ABC Menghitung Luas segitiga yang berada dalam system koordinat Tentunya teman – teman pernah berjumpa dengan soal matematika khususnya tentang bagaimana mencari luas segitiga yang ketiga sisinya tidak diketahui belum ada. Tetapi yang sudah diketahui adalah koordinat di masing – masing titik sudut. Haha….ini soal yang aneh. Jangan bingung teman – teman, sekarang saya akan menjelaskan secara tuntas bagaimanakah mencari luas segitiga yang aneh seperti itu ?. Misalkan diketahui segitiga ABC seperti pada gambar di bawah ini Dari gambar terlihat bahwa segitiga ABC terletak pada koordinat A x1, y1 , Bx2, y2 dan C x3, y3 . Untuk mencari luas segitiga ABC kita menggunakan rumus $latex L=\frac{1}{2}\begin{bmatrix}1&1&1\\x_{1}&x_{2}&x_{3}\\y_{1}&y_{2}&y_{3}\end{bmatrix}$. Yang menjadi masalah sekarang adalah apa maksud semua komponen yang ada di dalam kurung ?. $latex \begin{bmatrix}1&1&1\\x_{1}&x_{2}&x_{3}\\y_{1}&y_{2}&y_{3}\end{bmatrix}$ Maksudnya adalah determinan matriks 3 x 3 yang komponennya semua angka – angka yang ada di dalam matriks tersebut mulai dari 1 sampai y3. Jadi kuncinya kita harus mengingat kembali cara mencari determinan matriks 3 x 3. Biar lebih jelas kita langsung saja melihat contoh – contoh di bawah ini Contoh 1 Tentukanlah luas sebuah segitiga ABC yang titik sudut sudutnya berada dalam koordinat A 2, 4 , B 4, 7 dan C 6, 1 . Jawab Titik A 2,1 berarti x1 = 2 dan y1 = 1 Titik B 4, 7 berarti x2 = 4 dan y2 = 7 Titik C 6, 1 berarti x3 = 6 dan y3 = 1 Kemudian untuk mencari luasnya kita masukkan nilai – nilai ini ke rumus luas yang di atas , sehingga $latex L=\frac{1}{2}\begin{bmatrix}1&1&1\\x_{1}&x_{2}&x_{3}\\y_{1}&y_{2}&y_{3}\end{bmatrix}$ $latex \frac{1}{2}\begin{bmatrix}1&1&1\\2&4&6\\1&7&1\end{bmatrix}$ Sekarang kita harus terlebih dulu mennyelesaiakan perhitungan angka – angka di dalam kurung dengan mengoperasikannya sama seperti mencari determinan matriks 3 x 3 Untuk mencari determinannya kita harus mengeluarkan dua kolom pertama kemudian menarik garis diagonal Determinan ditentukan dengan cara mengalikan angka – angka yang segaris dan dipisahkan oleh tanda seperti tanda yang ada di bawah garis, sehingga determinannya bisa ditentukan sebagai berikut Det = + – – – = 4 + 6 + 14 – 4 – 42 – 2 = -16 Nilai min berlaku mutlak untuk luas sehingga angka min 16 dihitung 16 saja Setelah determinannya ketemu kemudian kita masukkan ke luas yang tadi sehingga L = ½ . 16 = 8 satuan luas. Mungkin teman – teman masih bingung ya, baik kita coba lagi contoh berikut Contoh 2 Tentukanlah luas sebuah segitiga yang dibatasi oleh koordinat A 3, 1 , B 6, 5 dan C 2, 3. Jawab A 3, 1 berarti x1 = 3 dan y1 = 1 B 6, 5 berarti x2 = 6 dan y2 = 5 C 2, 3 berarti x3 = 2 dan y3 = 3 Bentuk matriksnya adalah $latex \begin{bmatrix}1&1&1\\3&6&2\\1&5&3\end{bmatrix}$ Dan determinannya adalah Determinan = + + – – – = 18 + 2 + 15 – 6 – 10 – 15 = 4 Berarti luas segitiga tersebut adalah L = ½ .4 = 2 satuan luas. Soal Tentukanlah luas segitiga yang dibatasi oleh A 3 , 4 , B -1 , 6, dan C 5 , -1 . Demikianlah artikel uraian singkat saya tentang mencari luas segitiga yang dibatasi oleh koordinat. Semoga pembahasan ini bisa membantu teman – teman yang sedang mencari referensi. Salam
Liputan6com, Jakarta Macam-macam segitiga merupakan jenis bangun datar. Segitiga adalah bangun datar yang dipelajari dalam geometri. Ada macam-macam segitiga yang dipelajari dalam subjek ini. Macam-macam segitiga memiliki tiga sisi dan tiga sudut. Semua sisi dan sudut bisa memiliki ukuran yang berbeda. Jika ABC adalah segitiga, maka
- Berikut ini 50 latihan soal latihan PAS UAS Matematika kelas 10 SMA semester 2, berikut dengan kunci jawaban. Contoh soal PAS, UAS Matematika Kelas 10 Semester 2 terdiri dari 50 soal pilihan ganda lengkap dengan kunci jawabannya. Semua soal PAS, UAS Matematika Kelas 10 Semester 2 ini, ditujukan kepada orang tua untuk memandu proses belajar anak menghadapi Penilaian Akhir Tahun PAT atau Ujian Kenaikan Kelas UKK. Pastikan siswa harus terlebih dahulu menjawab soal PAS, UAS Matematika Kelas 10 SMA/MA ini, sebelum menengok hasil kunci jawaban. Gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Contoh Soal PAS, UAS Matematika Kelas 10 Kurikulum 2013 1. Diketahui titik C dan D diwikili oleh c=10, 8, dan d=2, 4. Jika diketahui titik R terletak pada vector CD dengan perbandingan CR RD = 1 3. Tentukan titik R!A. 1, 3B. 2, 4C. 7, 7D. 8, 6E. 8, 7 Kunci Jawaban E 2. Sebuah vector yang panjangnya satu, biasa disebut dengan ..A. Vector satuanB. Vector nolC. Vector kolomD. Vector posisiE. Kolinear Kunci Jawaban A 3. Bentuk sederhana vector PQ+QB+BA+AC+AS adalah …A. PPB. AAC. PSD. PCE. QS Kunci Jawaban C 4. Susi suka basket, Nino suka badminton, dan Ali suka sepak bola. relasi yang mungkin dari ketiga anak tersebut adalah...A. macam-macam olah ragaB. bola kesukaan merekaC. olah raga kesukaan merekaD. makanan kesukaan merekaE. hobi mereka Kunci Jawaban C 5. Diketahui fungsi gx= x + 1 dan fx= x2 + x - 1. komposisi fungsi f0 g x = ...A. x2 + 3x + 3B. x2 + 3x + 2C. x2 - 3x + 1D. x2 + 3x - 1E. x2 + 3x + 1 Kunci Jawaban E 6. Suatu fungsi f R → R ditentukan oleh ƒ x = x2 + 2. Anggota dari daerah asal yang mempunyai peta 18 adalah...A. 5 dan -5B. 4 dan -4C. 3 dan -3D. 2 dan -2E. 1 dan -1 Kunci Jawaban B 7. Diketahui himpunan pasangan berurutan dari suatu relasi adalah {1, 3; 2, 3; 2, 4; 3, 1}. Himpunan daerah asalnya adalah...A. {1, 2}B. {1, 2, 3}C. {1, 2, 3, 4}D. {1, 3, 4}E. {3, 4} Kunci Jawaban B 8. Diketahui K = { 3, 4, 5} dan L = { 1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi " dua lebihnya dari" himpunan K ke himpunan L adalah...A. { 3, 5; 4, 6}B. { 3, 5; 4, 6; 5,7}C. { 3, 1; 4, 2; 5,3 }D. { 3, 2; 4, 2; 5, 2}E. { 3, 1; 3, 2; 3, 3} Kunci Jawaban B 9. Range dari pasangan terurut { 2, 1; 3, 5; 4, 2; 4, 4; 6, 4} adalah...A. {1, 2, 4, 5}B. {1, 2, 3, 4, 5}C. {1, 2, 3, 4, 5, 6}D. {1, 3, 5}E. {2, 4, 6} Kunci Jawaban A 10. Dari pernyataan- pernyataan berikutI. Siswa dengan tempat duduknyaII. Siswa dengan tanggal lahirnyaIII. Negara dengan lagu kebangsaannyaYang berkorespondensi satu-satu adalah...A. Hanya II dan IIIB. Hanya I, II dan IIIC. Hanya I dan IIID. Hanya I dan IIE. Hanya I Kunci Jawaban A 11. Di bawah ini adalah himpunan berpasangan1. 1, a; 2, b; 3, b2. 1, a; 1, b; 3, c3. 2, 4; 4, 8, 6, 124. 2, 4, 2, 8, 6, 12Yang merupakan pemetaan adalah...A. 2 dan 4B. 2 dan 3C. 1 dan 3D. 1 dan 2E. 1 dan 4 Kunci Jawaban C 12. Diketahui suatu fungsi dengan rumus fx = 15 – 2x. jika fa = 7 maka nilai a adalah …….A. 11B. 4C. 1D. 7E. -4 Kunci Jawaban B 13. Berapakah hasil dari 3 log 12 + 3 log 24 – 3 log 1/27…A. 1B. 3C. 4D. 2E. 6 Kunci Jawaban B 14. Apabila 3log2 = a, maka jika 3 log 12 akan memiliki nilai…A. a + 1B. 2a + 1C. 3a + 1D. 2a + 3E. a + 2 Kunci Jawaban B 15. Apabila garis y = bx – a digunakan untuk memotong garis y = ax2 + bx a – 2b pada titik 1,1 dan x0, y0, maka hasil dari x0 + y0 adalah….A. 2B. 0C. -2D. -4E. -6 Kunci Jawaban E 16. Rumus suatu fungsi dinyatakan dengan fx = 2x + 5. Jika fa = 7, nilai a adalah … .A. -1B. -2C. 1D. 2 E. 3 Kunci Jawaban C 17. Diketahui rumus fungsi fx = -1-x. Nilai f-2 adalah … .A. -3B. -2 C. -1D. 1E. 2 Kunci Jawaban D 18. Jika fx = 4x2 + 3x + 5, maka nilai f1/2 adalah ... .A. 5,5B. 6,5C. 7,5D. 8,5E. 9,5 Kunci Jawaban C 19. Jika fx = x2 + 2x – c, dan f3 = 9. Maka nilai c adalah ... .A. 6 B. 5C. -5D. -6E. -8 Kunci Jawaban A 20. 33. Diketahui PQR, jika p = 4 cm, q = 6 cm, dan ∠R=30o maka luas PQR adalah...A. 4 cm2B. 5 cm2C. 6 cm2D. 7 cm2E. 8 cm2 Kunci Jawaban B 21. Jika diketahui segitiga ABC dengan a = 10 cm, b = 12 cm, dan C = 1200 maka luas segitiga tersebut adalah...A. 60 cm2B. 30√3 cm2C. 40 cm2D. 40√3 cm2E. 30 cm2 Kunci Jawaban C sin ⁡4x+sin⁡2x /cos⁡ 4x +cos⁡2x senilai dengan....A. tan 3xB. –tan 3xC. cos 3xD. cotan 3xE. – cotan 3x Kunci Jawaban B 23. Tiga buah kapal P,Q,R menebar jaring dan ketiganya membentuk sebuah segitiga. Jika jarak P ke Q 120 m, Q ke R adalah 100 m,dan ∠PQR adalah 120o. Maka luas daerah tangkapan yang terbentuk oleh ketiga kapal tersebut adalah... m2B. 3000√3 m2C. 3000√2 cm2D. 3000√3 cm2E. 3000 m2 Iklan untuk Anda Warga Yang Sakit Lutut dan Pinggul Wajib Membaca Ini!Advertisement byKunci Jawaban A 24. Grafik fungsi fx = sin 4x mempunyai periode...A. πB. 2πC. 3πD. π/2E. 1/3 π Kunci Jawaban B 25. Besar Amplitudo dari grafik y = 2 sin x dalam interval 0o ≤ x 360o adalah...A. 2B. 3C. 6D. –3E. –4 Kunci Jawaban D 26. Jika ƒx = 3x – 5 dan gx = 6 – x – x2, maka ƒx – gx = ....A. x2+ 4x – 11 B. x2 + 4x + 11C. –x2 – 4x – 11D. x2 – 5x + 10E. x2 + 5x – 10 Kunci Jawaban A 27. Jika fx = 2x-1/3x+4 , x≠-4/3, maka f -1 x adalah...A. 4X-1/3X+2 , x ≠-2/3B. 4X-1/3X-2, x ≠2/3C. 4X+1/2-3X , x ≠2/3D. -4X-1/3X -_2 , x ≠2/3E. 4X+1/3X+2 , x ≠2/3 Kunci Jawaban A 28. Diketahui fungsi f A → R dengan fx = x2 + 2x – 3. Jika daerah asal A = {x – 4 ≤ x ≤ 3}, maka daerah hasil fungsi f adalah….A. {y 0 ≤ y ≤ 12}B. {y 5 ≤ y ≤ 12}C. {y – 4 ≤ y ≤ 12}D. {y – 4 ≤ y ≤ 5}E. {y y ≤ 12} Kunci Jawaban C 29. Jika diketahui fungsi fx = x – 11, maka berapakah nilai fx2 – 3fx – fx2?A. 19x – 19x – -25x – -25x + -3x + 11. Kunci Jawaban A 30. Pada segitiga PQR, diketahui panjang sisi PQ = 12 cm, QR = 10 cm, dan besar ∠Q = 30°. Luas segitiga PQR adalah … 30√ 30√ 60. Kunci Jawaban A 31. Diketahui suatu fungsi hx = fx . gx. Jika nilai fx = x + 6 dan gx = 2x – 1, maka berapakah nilai hx?A. 2x2 + 12x – 2x2 + 12x + 2x2 + 11x – 2x2 + 11x + 2x2 – 11x + 6. Kunci Jawaban C 32. Himpunan penyelesaian dari pertidaksamaan x^2-2x-8>0 adalah....A. {x│x4,x ∈R}B. {x│x-4,x ∈R}C. {x│x>-2 atau x>4,x ∈R}D. {x│x≤-2 atau x≥4,x ∈R}E. {x│x≤-2 atau x>4,x ∈R} Kunci Jawaban E 33. Himpunan penyelesaian dari √x-1>√3-xadalah...A. {x│-2B. {x│ 2C. {x│-2≤x<3,x∈R}D. {x│ 2E. {x│-2 Kunci Jawaban A 34. Diketahui gx = 2x + 3 dan fx = x2 – 4x + 6, maka fogx = ….A. 2x2-8x + 12B. 2x2 – 8x + 15C. 4x2 + 4x + 3D. 4x2 + 4x + 15E. 4x2+ 4x + 27 Kunci Jawaban B 35. Nilai x dan y yang memenuhi sistem persamaan y = 2x – 3 dan 3x – 4y = 7 adalah.....A. x = -1 dan y = 2B. x = -1 dan y = -1C. x = 1 dan y = -1D. x = -1 dan y = -2E. x = -1 dan y = 1 Kunci Jawaban C 36. Dalam segitiga ABC, A, B, dan C merupakan sudut-sudutnya. Jika tan A = 3/4 dan tan B = 4/3, maka sin C =....A. -1B. 2C. 1D. 24/25E. - 24/25 Kunci Jawaban B 37. Diketahui segitiga ABC dengan panjang AB = 6 cm, BC = 5 cm dan AC = 4 cm. Nilai cos B adalah …A. 1/2B. 3/4C. 4/5D. 8/9E. 11/12 Kunci Jawaban C 38. Jika sin A = 12/13, maka cos 2 A = ....A -160/169B. 160/ 169C -119/169D. 25/169E. -25/169 Kunci Jawaban B 39. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 1200B. 900C. 600D. 450E. 300 Kunci Jawaban C 40. Himpunan pasangan berurutan berikut yang merupakan fungsi adalah ... .A. {2,2,1,1,3,2} B. {2,2,2,1,2,3}C. {2,2,2,3,3,2}D. {3,2,3,3,4,3}E. {1,3,3,1,3,3} Kunci Jawaban A 41. Range dari himpunan pasangan berurutan {2, 1, 3, 5, 4, 2, 4, 4, 6, 4} adalah …A. {1, 2, 3, 5} B. {1, 2, 4, 5}C. {1, 2, 3, 4, 5}D. {1, 2, 3, 4, 5, 6}E. {1, 2, 3, 4, 5, 6} Kunci Jawaban B 42. Diketahui A = {2,3} dan B = {1,3,5}. Banyaknya anggota A x B adalah ... .A. 8 buah B. 6 buah C. 4 buah D. 3 buah .E. 2 buah Kunci Jawaban B 43. Ukuran sudut 2100 kalau dinyatakan dalam radian adalah....A. 7/12 π 7/6 π 4/12 π 6/7 π 12/7 π rad Kunci Jawaban D 44. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,260B. 35,260C. 37,260D. 39,260E. 40,260 Kunci Jawaban B 45. 100 + 200 + π/6+ π/4+π/3 sama dengan ... A. 1350B. 1650C. 1800D. 2100E. 2750 Kunci Jawaban B 46. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,26 derajatB. 37,26 derajatC. 39,26 derajatD. 30,26 derajatE. 25,78 derajat Kunci Jawaban E 47. Suatu segitiga ABC siku-siku di B, besar sudut A = 30 derajat, panjang AB = 15 cm. Panjang sisi AC adalah…A. 10 cmB. 10 cmC. 5 cmD. 15 cmE. 30 cm Kunci Jawaban C 48. Diketahui cos α derajat adalah 1/2. α sudut lancip 0 derajat < α derajat < 90 derajat. Berapa nilai perbandingan trigonometri sudut α derajat yang lain?A. cos sec α = c/a = 2/√3 = 2/3√6B. cos sec α = c/a = 2/√3 = 2/3√4C. cos sec α = c/a = 2/√3 = 2/4√3D. cos sec α = c/a = 2/√3 = 1/2√3E. cos sec α = c/a = 2/√3 = 2/3√3 Kunci Jawaban E 49. Berapa radian jarak putar jarum menit sebuah jam apabila ia berputar selama 45 menit?A. 45/720 2π=1/16πradB. 45/720 2π=1/8πradC. 45/120 2π=1/2πradD. 45/620 2π=1/3πradE. 45/420 2π=1/4πrad Kunci Jawaban B 50. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 120 derajatB. 90 derajatC. 45 derajatD. 30 derajatE. 60 derajat Kunci Jawaban E * Disclaimer artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak. Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Artikel ini telah tayang di dengan judul 50 Soal PAS, UAS Matematika Kelas 10 Semester 2 K13 dan Kunci Jawaban Penilaian Akhir Tahun
pembuktianbesar sudut segitiga 180 derajat nur asiyah muis 2d 1301125110 filsafat sejarahmatematika jumlah besar sudut segitiga 180o diketahui segitiga abc, segitiga atau segi tiga adalah nama suatu bentuk yang dibuat dari tiga sisi yang berupa garis lurus dan tiga sudut matematikawan euclid yang hidup diketahui segitiga ABC dengan A2,1,2,B4,-1,3 dan C2,7, D pada pertengahan BC dan E pada AB sehingga DE tegak lurus AB,maka panjang AE sama dengan Panjang AE adalah 1,5 satuanperhitungan terlampir AturanSinus dan Aturan Cosinus merupakan dua aturan yang menghubungkan panjang sisi dan besar sudut dalam segitiga sembarang dengan menggunakan konsep trigonometri. Sesuai dengan namanya, Aturan Sinus melibatkan fungsi sinus, sama halnya dengan Aturan Cosinus. MatematikaGEOMETRI Kelas 8 SMPKOORDINAT CARTESIUSPosisi Objek Pada BidangDiketahui segitiga ABC dengan koordinat titik A-1,2, B-4,-3, dan C2, 0. Jika berdasarkan titik acuan Px, y, koordinat A menjadi -3, 5. Koordinat titik B dan titik C terhadap titik P berturut-turut adalah .... a. 6,0 dan 0,-3 b. 4,0 dan 0, 3 c. -3,0 dan 0, 6 d. -6, 0} dan 0, 3Posisi Objek Pada BidangKOORDINAT CARTESIUSGEOMETRIMatematikaRekomendasi video solusi lainnya0127Diketahui K2,0, L4,-4, M6,0. Tentukan nilai N, sehi...0052Bayangan koordinat titik -5, 9 jika dicerminkan terhada...0203Diketahui dalam koordinat Kartesius terdapat titik P, Q, ...Teks videoDi sore ini diketahui segitiga ABC dengan koordinat titik A min 1,2 Benjamin 4 koma min 3 dan C nya 2,0 jika berdasarkan titik acuan itu x koma y koordinat A menjadi Min 3,5 maka koordinat titik B dan titik c terhadap titik p itu titik acuan berturut-turut adalah nah disini kita cari terlebih dahulu titik acuan b nya ya Nah disini kita bisa gunakan rumus ini untuk mencari titik koordinat terhadap titik acuan yaitu XP dikurang X Amin X acuan yaitu X baru di = X awal dikurang X acuannya Kemudian untuk titik y y baru = Y awal dikurangi acuan jadi X baru-baru ini adalah titik koordinat terhadap titik acuannya. Nah di sini berarti kita cari terlebih dahulu X acuan dan Ji acuantitik Ayah di mana yang awalnya titik A min 1,2 dan c x dan y a nya kemudian menjadi Min 3,5 berarti X dan y b nya Nah maka untuk X Y titik X Y X barunya untuk titik itu min 3 dan 3 = x awalnya yaitu minus 1 dikurang X acuannya kan kita cari maka X acuan itu = minus 1 ditambah 3 maka X acuannya itu = 2 Kemudian untuk yang ye ye baru sampai dengan awal dikurangi acuan y baru nya adalah 5 berarti 5 = y adalah 2 per 32 dikurang Y acuanMaka y acuan itu = 2 dikurang 5 maka y acuannya = 2 dikurang 5 yaitu minus 3. Nah, sehingga disini kita dapat untuk titik acuan atau titik p ya titik acuan P = 2 koma minus 3. Nah, kemudian kita cari titik koordinat B dan titik koordinat C terhadap titik acuannya Nah untuk yang titik B berarti untuk X baru ya kita cari X baru dan Y barunya maka untuk X baru itu sama dengan x awal-awalnya adalah Benjamin MP4 ya Min 4 dikurang dengan x acuannya adalah 2maka = Min 4 dikurang dua yaitu minus 6 Kemudian untuk ye ye baru itu sama dengan awal-awalnya adalah b nya minus 3 dikurang acuannya minus 3 maka = min 3 + 3 yaitu 0 Kemudian untuk yang titik c. Nah di sini berarti titik B ini kita dapat 6,0 lalu untuk kunci titik c yaitu untuk X barunya itu sama dengan nah yang awal dikurang acuan awalnya adalah 2 dikurang acuannya 2 maka = 0 eh 2 dikurang 20 Kemudian untuk yg baru itu sama dengan y awal berarti awalnya adalah 0 dikurang dengan y acuan yaitu acuannya adalah minus 3 minus 3 maka = 3 sehingga kita dapat titik koordinat c-nya adalah 0,3 sehingga untuk koordinat titik B dan titik c berturut-turut adalah 6,0 dan 0,3 yaitu yang D oke sekian sampai jumpa di pembahasan selanjutnya MelukisSegitiga jika Diketahui Dua Sisi dan Sudut Apit Kedua Sisi Tersebut Sisi, Sudut, Sisi Hubungkan titik A dengan C dan titik B dengan C, sehingga diperoleh ABC sama sisi dengan AB = BC = AC = 5 cm. C A 5 cm B Gambar 8.63 P Q R A B P Q C R S Gambar 8.64 Kerjakan soal-soal berikut di buku tugasmu. Lukislah busur lingkaran dari titik
MatematikaTRIGONOMETRI Kelas 10 SMATrigonometriAturan KosinusDiketahui segitiga ABC dengan A3,1 B5,2 , dan C1,5 . Besar sudut BAC adalah ....Aturan KosinusTrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0259Diketahui segitiga ABC dengan A4,1,2, B10,9,-6, dan C...0155Seorang siswa akan mengukur tinggi pohon yang berjarak 4a...0312 A dan B titik ujung sebuahterowongan yang dili dari ...0205Pada segitiga ABC, diketahui AC=3 cm, AB=4 cm dan sudut A...Teks videoHai complaints pada soal ini kita mengetahui segitiga ABC dengan koordinat A adalah a 3,1 b 5,2 c 1,5, maka besar sudut b a c adalah disini kita mengetahui untuk vektor AB adalah 52 dikurang 31 yakni 21 untuk vektor AC adalah 15 dikurang 31 yakni negatif 24 maka nilai dari cos a adalah a b * a c dibagi jarak AB dikali jarak a-c yakni cos a = 2 dikali negatif 2 + 1 dikali 4 dibagi akar dari 2 kuadrat ditambah 1 kuadrat ditambah akar dari negatif 2 kuadrat ditambah 4 kuadrat. Nah disini saya beritahukan bahwa cara pengalian untuk a b * a c yakni kita ketahui nilai dari a b adalah 21 sedangkan Aceh adalah negatif 24 maka cara pengalian nya adalah 2 ini kita kalikan dengan 2 ini maka 2 dikali negatif 2 kemudian kita + 1 kita kalikan dengan 4 maka 1 * 4 hasilnya adalah yang sebagai pembilang diatas ini dan untuk jaraknya yakni kita katakan saja untuk x nya adalah untuk a b adalah 2 kuadrat Sedangkan untuk ini adalah 1 kuadrat 6 begitupun untuk AC maka kita dapatkan nilai cos a adalah negatif 4 ditambah 4 per akar 5 * akar 20 Karena kita dapatkan adalah 0, maka sudut yang memenuhi untuk suatu segitiga yakni a adalah 90 derajat maka kita memenuhi yakni opsi C sampai jumpa di pertemuan selanjutnya
Catatan: Untuk pembuktian teori di atas, silahkan teman-teman lihat di bagian bawah setelah contoh-contoh soalnya. Contoh soal Menentukan Titik Berat Segitiga: 1). Tentukan koordinat titik berat segitiga ABC dengan koordinat masing-masing titik sudut $ A(-1,2) $ , $ B(3, -2) $ , dan $ C(1,6) $ ! Jawaban yang benar untuk pertanyaan tersebut adalah , , dan . Untuk menentukan besar sudut dengan menggunakan vektor, ingat rumus-rumus berikut. Jika diketahui titik dan , maka Pada soal ditanyakan besar sudut-sudut dalam segitiga jika diketahui titik sudut , dan . Berarti ditanyakan sudut , sudut , dan sudut . 1. Besar sudut . Sudut terbentuk dari vektor dan vektor . Menentukan vektor dan vektor . Menentukan besar sudut Jadi, besar sudut . 2. Besar sudut . Sudut terbentuk dari vektor dan vektor . Menentukan vektor dan vektor . Menentukan besar sudut . Jadi, besar sudut . 3. Besar sudut . Sudut terbentuk dari vektor dan vektor . Menentukan vektor dan vektor . Menentukan besar sudut . Jadi besar sudut . Dengan demikian, besar sudut-sudut segitiga seperti tersebut diatas. Tentukankoordinat titik berat segitiga abc dengan koordinat masing masing titik sudut a 1 2 b 3 2 dan c 1 6. Contoh soal menentukan titik berat segitiga. Berdasarkan penjelasan di atas tentunya anda akan memilih metode terakhir karena langsung menggunakan koordinat titik tersebut untuk digunakan dalam menghitung luas segitiga yang diinginkan
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriDiketahui segitiga ABC dengan sudut B = 45 dan CT garis tinggi dari sudut C Jika BC = a dan AT = 3/2 a akar2, maka AC =Persamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videoJika kalian menemukan soal seperti ini kalian Gambarkan dulu segitiga nya sesuai dengan yang diberitahu. Bagaimana cara menggambarnya dari soal 45 derajat lalu CT nya itu tinggi dari segitiga itu maka kita Gambarkan seperti ini kira-kira gambarnya akan menjadi seperti ini lalu kita ketahui di sini sudutnya 45 derajat lalu untuk garis CT lalu diketahui BC nya adalah a. Di sini berarti a lalu atm-nya kita ketahui sini 3/2 A akar 2 maka kita akan mencari nilai AC kita sudah mengetahui kalau sudut b adalah 45 derajat kita akan gunakan sin 45 derajat sin 45 derajat sin itu adalah D berarti depannya kita mengetahui adalah CT per ngirimnya itu becek Nah, disini kita cari dp-nya agar lebih mudah Kita pindah rumah saja langsung di sini berarti misal CT per BC = Sin 45derajat. Jadi kalau kita ingin mencari CT itu = Sin 45derajat dikalikan dengan BC Nah kita dapat c t = sin 45 derajat adalah 1 per 2 akar 2 lalu BCA kita ketahui adalah a. Maka kita dapat c t = a per 2 √ 2 kita sudah dapat CT nya kita lanjut Sekarang kita akan mencari ac-nya kita sudah mengetahui CT Nah di sini berarti kita akan mencari Aceh lewat pythagoras tapi kalau ingin mencari Aceh itu = akar dari X kuadrat ditambah c t kuadrat jadi kita tinggal masukkan saja AC = a t kuadrat berarti kita masukan atau berapa Apa itu 3/2 a √ 2 dikuadratkan dulu lalu ditambah Katanya kita ketahui adalah a per 2 akar 2 b kuadrat dan juga ini akan kita dapatkan kita hitung dulu 3 kita kuadrat kan jadi 9 Lalu 2 kita kuatir akan jadi 4 hanya kita kuadratkan lalu duanya tetap jadi 2 nah disini kita bisa coret ini jadi dua lalu + a kuadrat lalu per 2 dikuadratkan jadi 4 √ 2 dikuadratkan tetap jadi 2 ini kita juga bisa coret jadi 2 maka Aceh kita dapatkan = 9 a kuadrat per 2 + ini jadi aquadrat per 2 kita tambah AC = akar 9 a kuadrat + a kuadrat dari 10 a kuadrat per 2. Nah ini kita bisa bagi jadi akar 5 kuadrat lalu disini kita hitung lagi akar 5 berarti tidak bisa diakarkan lagi kita buat saja akar 5 lalu a kuadrat ya akar a kuadrat akan terjadi maka kita dapatkan jawabannya adalah a √ 5 jawabannya adalah C sampai bertemu di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
h7sM73.
  • qrt00srxqv.pages.dev/61
  • qrt00srxqv.pages.dev/347
  • qrt00srxqv.pages.dev/167
  • qrt00srxqv.pages.dev/491
  • qrt00srxqv.pages.dev/200
  • qrt00srxqv.pages.dev/402
  • qrt00srxqv.pages.dev/11
  • qrt00srxqv.pages.dev/104
  • diketahui segitiga abc dengan titik sudut a 2 7 b